5 非标准宇宙学模型
5.1 Quintessence模型
Quintessence模型通过加入标量场\(\phi\)引入负压项(Caldwell et al., n.d.),其作用量为 \[\label{eqn:s_quintessence} S=\int \rm{d}^4 x\sqrt{-g}\left(\frac{R}{16\pi G}+\mathscr{L}_{\rm m}+\mathscr{L}_\phi \right)\ .\] 这里\(\mathscr{L}_{\rm m}\)为物质的拉格朗日量, \(\mathscr{L}_\phi\)为\(\phi\)的拉格朗日量 \[\mathscr{L}_\phi=-\frac{1}{2}(\nabla_\mu \phi)(\nabla^\mu \phi)-V(\phi)\ , \tag{5.1}\] 其中,\(V(\phi)\)为势能项[^17]。 标量场\(\phi\)对应的能动张量为 \[T_{\mu \nu}(\phi)=-\frac{2}{\sqrt{-g}}\frac{\delta(\sqrt{-g}\mathscr{L}_\phi)}{\delta g^{\mu\nu}} =(\nabla_{\mu} \phi)(\nabla_{\nu} \phi)+g_{\mu\nu}\mathscr{L}_{\phi}\ ,\] 在FLRW度规背景下,标量场能量密度\(\rho_\phi\)及压力\(p_\phi\)分别为 \[\rho_\phi=\frac{1}{2}\dot{\phi}^2+V(\phi)\ ,\quad p_\phi=\frac{1}{2}\dot{\phi}^2-V(\phi)\ .\] 则状态方程 \[w_\phi=\frac{p_\phi}{\rho_\phi}=\frac{\dot{\phi}^2/2-V(\phi)}{\dot{\phi}^2/2+V(\phi)} \ .\] 可以看出\(w_\phi\)的取值范围为\((-1, 1)\)。
对于曲率为0的宇宙,Quintessence的弗里德曼方程组为 \[\begin{aligned} H^2 &= \frac{8\pi G}{3}\left(\frac{1}{2}\dot{\phi}^2+V(\phi)+\rho_{\rm m}\right) \ ,\\ \dot{H} &=-4\pi G\left(\dot{\phi}^2+\rho_{\rm m}+p_{\rm m}\right)\ . \end{aligned}\] 作用量对\(\phi\)求变分,可以得到标量场的运动方程: \[\ddot{\phi}+3H\dot{\phi}+V_{,\phi}=0\ , \tag{5.2}\] 其中,\(H\)为哈勃参数,\(V_{,\phi}\equiv \partial V/\partial \phi\)。 显然,Quintessence的状态方程会随时间演化,能否满足暗能量在晚期宇宙中成为主导成分取决于标量场势能\(V(\phi)\)的形式。 当\(\dot{\phi}^2<V\)时,状态方程\(w_\phi<-1/3\),则满足晚期宇宙加速膨胀的要求。 文献中常讨论以下两类Quintessence模型(Caldwell & Linder, n.d.),
解冻(thawing)模型。 运动方程(5.2)中的\(3H\dot{\phi}\)为阻尼项。 若开始时标量场被阻尼项冻结,则状态方程\(w_\phi\approx -1\)。 随着哈勃参数的减小,阻尼降低,标量场开始向低势能演化,同时状态方程逐渐偏离\(-1\),向\(w_\phi\to 0\)演化。 满足解冻模型的势能形式有 \(V(\phi)=M^{4-n}\phi^{n}, n>0\),以及 \(V(\phi)=M^4\exp(-\beta\phi/M_{pl})\)等,其中,\(M_{pl}\)为普朗克质量,\(M\)为自由参数。
冻结(freezing)模型。 冻结模型中,标量场在早期已经开始向势能低点演化,但是随着其逐渐成为主导成分,速度会不断减慢并逐渐停止。 冻结模型初始时状态方程\(w_\phi>-1\),随着标量场的冻结,逐渐向\(w_\phi\to -1\)演化。 满足冻结模型的势能形式有 \(V(\phi)=M^{4+n}\phi^{-n}, n>0\),以及 \(V(\phi)=M^{4+n}\phi^{-n}\exp(\alpha \phi^2/M_{pl}^2)\)等。
5.2 K-essence模型
理论上,忽略公式(5.1)中的势能项, 通过单独调节动能项的形式即可以满足加速膨胀的要求。 此时可以得到一系列K-essence模型(Armendariz-Picon et al., n.d.-a, n.d.-b; Chiba et al., n.d.), 其作用量为 \[S=\int \rm{d}^4 x\sqrt{-g}\left(\frac{R}{16\pi G}+\mathscr{L}_{\rm m}+p(\phi, K) \right)\ , \tag{5.3}\] 其中,\(K\equiv -(1/2)(\nabla_\mu \phi)(\nabla^\mu \phi)\)为动能项。 能动张量为 \[T_{\mu \nu}(\phi)=-\frac{2}{\sqrt{-g}}\frac{\delta(\sqrt{-g}p)}{\delta g^{\mu\nu}} =p_{, K}(\nabla_{\mu} \phi)(\nabla_{\nu} \phi)+g_{\mu\nu}p\ ,\] 其中,\(p_{, K}\equiv \partial p/\partial K\)。 K-essence的状态方程为 \[w_\phi =\frac{p_\phi}{\rho_\phi}=\frac{p}{2K p_{, K}-p}\ .\] K-essence的一个特例是Ghost condensate模型(Hamed et al., n.d.),其拉氏量为 \[p=-K+\frac{K^2}{M^4}\ ,\] 其中,\(M\)为以质量为单位的常数。此时状态方程 \[w_\phi =\frac{1-X/M^4}{1-3X/M^4}\ .\] 当\(1/2<x/M^4<2/3\)时,\(w_\phi\)的取值范围为\((-1, -1/3)\),满足加速膨胀的要求。
5.3 Phantom模型
若Quintessence拉氏量(公式[(5.1)])中的动能项取正号: \[\label{eqn:l_phantom} \mathscr{L}_\phi=\frac{1}{2}(\nabla_\mu \phi)(\nabla^\mu \phi)-V(\phi)\ ,\] 则求得的状态方程变为 \[w_\phi = \frac{\dot{\phi}^2/2+V(\phi)}{\dot{\phi}^2/2-V(\phi)}\ .\] 当\(\dot{\phi}^2/2<V(\phi)\)时,\(w_\phi<-1\),称为幻影理论(Phantom)(Carroll, Hoffman, et al., n.d.; Sami & Toporensky, n.d.; Singh et al., n.d.)。 相比宇宙学常数及Quintessence,幻影理论会使宇宙更快的加速膨胀,导致宇宙走向大撕裂(Big Rip)。
5.4 Quintom模型
目前的观测表明暗能量状态方程可能跨过\(w=-1\),而无论Quintessence(\(w>-1\))还是Phantom(\(w<-1\))都不能满足要求。 Quintom(Cai, Saridakis, et al., n.d.; Feng et al., n.d.)通过结合Quintessence与Phantom,使暗能量状态方程可以跨过\(w=-1\)进行演化。 最简单的Quintom模型只需要引入两个标量场\(\phi_1\)、\(\phi_2\),其中,\(\phi_1\)为Quintessence场,\(\phi_2\)为Phantom场。 则该系统对应的拉氏量为 \[\label{eqn:l_quintom} \mathscr{L}_\phi=\frac{1}{2}(\nabla_\mu \phi_1)(\nabla^\mu \phi_1)-V(\phi_1) + \frac{1}{2}(\nabla_\mu \phi_2)(\nabla^\mu \phi_2)-V(\phi_2)\ .\] 解得暗能量状态方程为 \[w_{\rm DE}=\frac{\dot{\phi_1}^2/2-V(\phi_1)-\dot{\phi_2}^2/2-V(\phi_2)}{\dot{\phi_1}^2/2+V(\phi_1)-\dot{\phi_2}^2/2+V(\phi_2)}\ .\] 显然,此时暗能量状态方程可以跨过\(-1\)。
5.5 \(f(R)\)理论
Quintessence模型通过引入标量场\(\phi\)得到加速膨胀的宇宙学解, 修改引力则直接通过修改时空几何达到同样的目的。 最简单的修改引力模型是\(f(R)\)模型,仅需将作用量中的里奇标量\(R\)变为\(R\)的任意函数\(f(R)\),其作用量是 \[S=\frac{1}{16\pi G}\int \rm{d}^4 x\sqrt{-g}\left( f(R)+\mathscr{L}_{\rm m}\right)\ .\]
\(f(R)\)有两种形式,第一种为度规形式,场方程通过令作用量对度规求变分得到; 第二种为Palatini形式,认为联络与度规是两个独立变量,场方程需要令作用量分别对度规以及联络求变分得到。 当用Palatini形式的\(f(R)\)解释晚期宇宙加速膨胀时,或者会与粒子物理标准模型产生矛盾,或者又难以与标准宇宙学模型进行区分(De Felice & Tsujikawa, n.d.)。 这里只介绍第一种形式的\(f(R)\)理论。
作用量对度规求变分可以得到对应的场方程: \[f_{, R}R_{\mu \nu} -\frac{1}{2}fg_{\mu \nu} -\nabla_\mu \nabla_\nu f_{, R}+\square f_{, R}g_{\mu \nu} = 8\pi GT_{\mu \nu}\ .\] 其中,\(f_{, R}\equiv \partial f/\partial R\)。 在FLRW度规背景下,可以得到对应的弗里德曼方程组: \[\begin{align} 3f_{, R}H^2 &= 8\pi G \rho_{\rm m} +(f_{, R}R-f)/2 -3H\dot{f}_{, R} \ ,\\ 2f_{, R}\dot{H} &=-8\pi G\rho_{\rm m} -\ddot{f}_{, R}+H\dot{f}_{, R}\ . \tag{5.4} \end{align}\] \(f(R)\)的具体形式拥有很大的自由度,但是需要满足以下几个限制条件:
当\(R\geq R_0 (>0)\)时,\(f_{, R}>0\)。 \(R_0\)为现在的里奇标量。该条件保证不会出现反引力。
当\(R\geq R_0\)时,\(f_{, RR}(R)>0\)。 该条件是本地引力测试(Dolgov & Kawasaki, n.d.; Faraoni, n.d.; Navarro & Van Acoleyen, n.d.; Olmo, n.d.)、 确保存在物质主导时期(Amendola, Gannouji, et al., n.d.; Amendola, Polarski, et al., n.d.)、以及宇宙学扰动稳定性的共同要求(Bean et al., n.d.; Carroll, Sawicki, et al., n.d.; Faulkner et al., n.d.; Song et al., n.d.)。
当\(R\gg R_0\)时,\(f(R)\to R-2\Lambda\)。 该条件是本地引力测试(Amendola & Tsujikawa, n.d.-b)、以及确保存在物质主导时期的要求(Amendola, Gannouji, et al., n.d.)。
当\(r=-Rf_{,R}/f=-2\)时,\(0<(Rf_{, RR}/f_{, R})\leq 1\)。 该条件来自晚期宇宙的限制(Amendola, Gannouji, et al., n.d.; Müller et al., n.d.)。
下面列举的几个模型都满足上述条件, \[\begin{aligned} f(R) &=-R-\mu R_c\frac{(R/R_c)^{2n}}{(R/R_c)^{2n}+1}\ ,&&\text{其中,}\quad n, \mu, R_c>0\ ,\\ f(R) &=-R-\mu R_c\left[1-(1+\frac{R^2}{R_c^2})^{-n}\right]\ ,&&\text{其中,}\quad n, \mu, R_c>0\ ,\\ f(R) &=-R-\mu R_c\tanh \left(\frac{|R|}{R_c}\right)\ ,&&\text{其中,}\quad \mu, R_c>0\ . \end{aligned}\]
为了跟\(\Lambda\)CDM对比,可以将方程组(5.4)进一步写为 \[\begin{align} 3AH^2 &= 8\pi G(\rho_{\rm m}+\rho_{\rm R} + \rho_{\rm DE}) \tag{5.5}\\ -2A\dot{H} &= 8\pi G (\rho_{\rm m}+\frac{4}{3}\rho_{\rm R} + \rho_{\rm DE}+p_{\rm DE}) \tag{5.6} \end{align}\] 其中,\(A\)为任一常数。 等效的暗能量能量密度\(\rho_{\rm DE}\)与压强\(p_{\rm DE}\)分别为 \[\begin{aligned} 8\pi G \rho_{\rm DE} & \equiv \frac{1}{2}(f_{, R}R-f) -3H\dot{f}_{, R} + 3H^2(A-f_{, R}) \\ 8\pi G p_{\rm DE} & \equiv \ddot{f}_{, R} + 2H\dot{f}_{, R} - \frac{1}{2}(f_{, R}R-f) -(3H^2+2\dot{H})(A-f_{, R}) \end{aligned}\] 由公式(5.5)及(5.6)可得状态方程为 \[w_{\rm DE}\equiv \frac{p_{\rm DE}}{\rho_{\rm DE}}=-\frac{2A\dot{H}+3AH^2+8\pi G \rho_{\rm R}/3}{3AH^2-8\pi G \rho_{\rm m}}\ .\] 可以进一步写为 \[w_{\rm DE}\simeq \frac{w_{\rm eff}}{1-(f_{, R}/A)\Omega_{\rm m}}\ ,\] 其中,\(w_{\rm eff}=-1-2\dot{H}/(3H^2)\),为所有成分总体的有效状态方程。 \(f(R)\)可以在不违反系统稳定性的条件下,产生一个Phantom的状态方程,即满足\(w_{\rm DE}<-1\)。 观测中对\(f(R)\)的限制可以参考(Ali et al., n.d.; Cardone et al., n.d.; Dev et al., n.d.; Martinelli et al., n.d.)。
5.6 DGP模型
DGP(Dvali–Gabadadze–Porrati)模型(Binetruy & Langlois, n.d.; Dvali et al., n.d.)假设我们的宇宙是一个嵌在五维闵可夫斯基时空体(bulk)中的四维膜(brane)。 除引力外所有相互作用都被限制在四维膜内,而引力可以在五维体中传播。 DGP的作用量为 \[S=\int \rm{d}^5 x \sqrt{-g^{(5)}}\frac{R}{16\pi G^{(5)}}+\int \rm{d}^4 x\sqrt{-g}\frac{R}{16\pi G} + \int \rm{d}^4 x \sqrt{-g}\mathscr{L}_m\ .\] 其中,角标\((5)\)代表该量是五维体中的量。
五维时空中的线元为 \[\rm{d} s^2=N^2(t, \xi)\rm{d} t^2 -A^2(t, \xi)\gamma_{ij}\rm{d} x^i \rm{d} x^j -B^2(t, \xi)\rm{d} \xi^2\ .\] 其中,\(\xi\)为第五维坐标。若四维膜由平直的FLRW度规所描述,则求解场方程得到的弗里德曼方程为 \[H^2\pm \frac{H}{r_c}=\frac{8\pi G}{3}\rho\ , \tag{5.7}\] 其中,\(r_c\)为临界尺度, \[r_c\equiv \frac{M_{pl}^2}{2 [M_{pl}^{(5)}]^2}\ ,\] \(M_{pl}\)与\(M_{pl}^{(5)}\)分别为四维时空与五维时空中的普朗克质量。 早期宇宙中,当\(H^{-1}\ll r_c\)时,公式(5.7)中的第二项可以忽略,方程变为通常的弗里德曼方程,DGP理论退化为通常的四维时空理论。 随着\(H\)不断减小,当\(H^{-1}\gg r_c\)时,(1) 若公式(5.7)中的第二项取正号,则\(H\to H_\infty=1/r_c\),即对应晚期膨胀宇宙的解; (2) 若取负号,则\(H\to H_\infty=\rho/(6M^3_{pl(5D)})\),此时会得到一个减速宇宙解。 DGP可以解释宇宙学常数问题: 当特征尺度大于\(r_c\)时,引力会进入五维体中传播,导致四维膜上的引力变弱。 但是DGP与多种观测结果存在偏差(Lombriser et al., n.d.; Xia, n.d.)。 此外,DGP还会引入鬼域(ghost field)问题(Dubovsky & Rubakov, n.d.)。